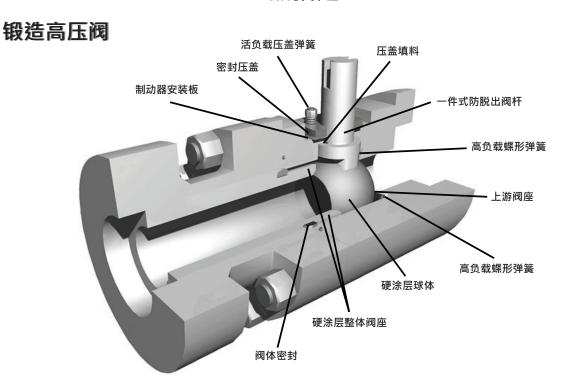
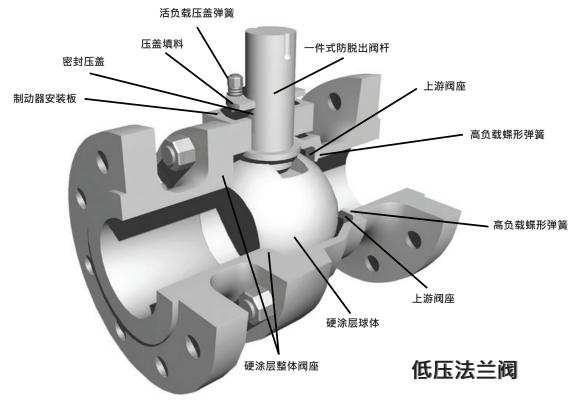


V 系列

安装与操作维护手册


目录


l. 简介
产品描述4
部件编码系统5-8
Ⅱ. 安装
收货及准备步骤9
执行器9
定向9
焊接、应力消除与绝缘9
绝缘操作后的步骤10
Ⅲ. 操作
润滑10
扭矩表10
阀杆转动及位置11
执行器11
IV. 维护
拆卸11-12
维修与返工13
蝶形弹簧高度13
重新装配14
执行器安装14
加压密封垫15
球体盖15
大口径阀门的锁定空隙16
蝶形弹簧16
完成装配18
V. 测试
故障排除19
部件库存规划19
推荐备件清单19
工厂授权服务中心

引言

本手册旨在介绍确保安全且成功地对金属阀座球阀进行安装、操作及维护的步骤,以实现使用期限内无故障。如您在操作或维护 ValvTechnologies 阀门时遇到困难,应直接将其送至 ValvTechnologies, Inc. 授权的维修设施或经销商处,或送至公司位于休斯顿的办事处。如不这样做,可能会导致保修失效。

产品描述

适用于 2010 年期间及之前安装的阀门的 V1 系列球阀部件编号系统

例如: B-3-C6-RF-FP-LV-2

1

阀门种类

A = XD

B = 标准

C = 控制调整

X = Xactrol

A = Addition
D = 单向双球

2

ANSI 标准

压力等级

3 = 150# O = 2500#

5 = 300# A = 3500#

6 = 600# B = 4500#

2 = 800 # C = 5000 #

7 = 900#

8 = 1500#

9 = 2000#

3

修正码

查阅修正 码表

4

连接端种类

SW = 承插焊接

BW = 对接焊接

SC = 螺纹连接(美国标准圆

锥管螺纹量规)

BL = 毛坏

RF = 凸面

RJ = 环形接合

FF = 平面

<u>5</u>

端口尺寸

STD = 标准通径

FP =全通径

RP = 缩径

SP = 特殊通径

6

XA = 特殊

制动

控制杆操纵

LV = 铸件 150# - 600#

锻造 900# & Up

LC = 铸件 900# & Up

LF = 锻造 150# - 600#

光阀杆

BS = 铸件 150# - 600#

锻造 900# & Up

BC = 铸件 900# & Up

BF = 锻造 150# - 600#

7

阀门尺寸

标准阀门尺寸 单位英寸 1/4" - 4"

适用于 2010 年期间及之后安装的阀门的 V1 系列球阀部件编号系统

例 1——非对接焊阀:

部件号示例: V3C6-RF-FP-L007-001QA-RDM

阀门描述: 3/4" ANSI 150# 凸面法兰,带控制杆的全通径球阀。

修正码 C6001

例 1——非对接焊接设计产品的部件号分解:

V	3	C6	RF	FP	L	7	1	QA	RDM
Α	В	С	D	Е	F	G	Н	I	J

例 2——对接焊阀:

部件号示例: V7C6-BW-FP-L007-001QA-RDM

阀门描述: ¾" ANSI 900# 对接焊接,带控制杆的全通径球阀

修正码 C6001。按照 EChart 1110、端口尺寸为 %" 且为 ¾" Schedule 160 管准备

了端部连接。

例 2——对接焊接设计产品的部件号分解:

	V	7	C6	BW	FP	L	7	001	QA	RDM
Γ	Α	В	С	D	Е	F	G	Н	I	J

例 3——对接焊阀

示例部件号: V7C6-DW-FP-L007-001QA-RDM

阀门描述: 34" ANSI 900# 对接焊接,带控制杆的全通径球阀。

修正码 C6001。按照 EChart 1110,端口尺寸为 %" 且 为 ¾" Schedule 80 XS 管准

备了端部连接。

例 3——对接焊接设计产品的部件号分解:

V	7	C6	DW	FP	L	7	1	QA	RDM
Α	В	С	D	Е	F	G	Н	I	J

A. 阀门种类

H——Nextech 三片式锻造固定球阀——侧面置入

K——止回阀

N——Nextech 两片式固定球阀——侧面置入

P——平行板滑动闸阀

O——节流阀

T——Nextech 单片式固定球阀——顶端置入

V——VI 系列——非耳轴底座支持设计

X——Xactrol(请见 EChart 1086)

Z——电子泄压阀(请见 EChart 1105)

ERV 隔离阀 (请见 EChart 1126)

适用于 2010 年期间及之后安装的阀门的 V1 系列球阀部件编号系统

B. 美国国家标准学会 (ANSI) 标准压力等级

3	150#	W	150# - 600#
4	400#	X	900# - 2500#
5	300#	Υ	3500# - 4500#
6	600#	С	API 2,000
2	800#	D	API 3,000
7	900#	E	API 5,000
8	1500#	F	API 30,000
9	2000#	F	API 10,000
0	2500#	G	API 15,000
А	3500#	Н	API 20,000
В	4500#		

C. 修正码 (请见修正码表、Nextech EChart 1049)

(请见修正码表、Nextech 的 EChart 1049)

(请见修正码表、PSG 阀门的 EChart 1048)

仅输入修正码的前 2 位数字并指定阀体、球芯及管端盖板的材料 以及涂层。例如,对于修正码 C6001,仅 需输入 "C6"。

D. 端部连接种类(入口x出口)

AA	API 6A x API 6A	BR	对焊焊接 x 凸面
LL	毛坯 x 毛坯	BJ	对焊焊接 x 环形接合
?W	对接焊接(对于 ISO 管·请参阅下述内容·对其 所有其他管·请查阅 EChart 1002)	BS	对焊焊接 x 承插焊接
FF	平面x平面	ВС	对接焊接 x 螺纹 (美国标准圆锥管螺纹量规)
GG	Grayloc 毂 x Grayloc 毂	RS	凸面 x 承插焊接
PP	管加长 x 管加长	SB	承插焊接 x 对焊焊接
RF	凸面 x 凸面	SP	承插焊接 x 管加长
JJ	环形接合 x 环形接合	SC	承插焊接 x 螺纹 (美国标准圆锥管螺纹量规)
SW	承插焊接 x 承插焊接	cs	螺纹(美国标准圆锥管螺纹量规) x 承插焊接
СС	螺纹(美国标准圆锥管螺纹量规) x 螺纹	XX	特殊 x 特殊
RC	凸面 x 螺纹	WF	晶片 x 晶片
НН	RCon x RCon		

对焊焊接预备末端:

当阀门有指定的对焊焊接末端连接时,将使用下列逻辑运算方法以决定 2 位对接焊接代码。

- 第一位数字表示对焊焊接预备末端的内径与外径。
- 第二位数字将是 "W" 表示对焊焊接预备末端。
- ISO 管路的对焊焊接末端将以下列方式编码。
- XXS——代码 "A"
- Schedule 160——代码 "B" Schedule 120——代码 "C"
- Schedule 80 XS——代码 "D"
- Schedule 40 STD——代码 "E"
- 对于其他管路,请参阅 EChart 1002

适用于 2010 年期间及之后安装的阀门的 V1 系列球阀部件编号系统

E. 端口尺寸/修正码几何结构

FP	全通径	ST	标准通径
XX	特殊通径	RP	异径孔道

F. 驱动

阀门均配有光阀杆,控制杆操纵或手轮操纵。在安装手动锥齿轮、电动、气动或液压制动器时,请选择光阀杆选项。

В	光阀杆	Е	电动
L	控制杆操纵	G	齿轮箱
W	手轮	Н	气动
		Р	液压

G. 正常阀门尺寸(英寸)

对于未加工破口阀门,请使用下列阀芯尺寸代码:

阀芯尺寸 3/8" -00A 阀芯尺寸 5/8" -00B 阀芯尺寸 1 1/16" -00C 阀芯尺寸 1 1/2" -00D 阀芯尺寸 2 1/2" -00E 阀芯尺寸 3 1/16" -00F 阀芯尺寸 3 1/2" -00G 阀芯尺寸 4 1/16" -00H 阀芯尺寸 5 1/8" -00J 阀芯尺寸 6 1/16" -00K 阀芯尺寸71/8" -00L 阀芯尺寸 8 1/16" -00M

H. 材料指标

(请参阅修正码表、EChart 1053。)

仅输入修正码的后 3 位数字并指示所有内部组件的 材料和涂层。例如,对于修正码 C6001,仅需输入 "001"。

I. 质量指标 (EChart 1099)

J. 独特的随机性

随机编码为具有代表性的 3 位数字。

- 起始编码——001
- 结束编码——999
- 余量值——00T
- 销售样品阀门——00Y

对于

特定阀门配置,随机编码的第一位数字可以使用下列字母进行修改。

A---Tech 17

B——双向

C——插入件/内衬件

D——出口端与入口端不匹配

E---MCE

G——高循环

H----Hemlock*

K——耐腐蚀控制杆硬件

L——阻塞/漏铸

M——多通道阀

P——清洗端口

S——阀门旁路系统

V——V 端口配置

W-----焊堆

X——ValvXpress

Z——特殊(请参阅特殊说明备注)

H. Hemlock*

所有等于或大于 1.06"的 Hemlock 阀门均是双向阀门,且在进行每个步骤时,均需要清洗所有的Hemlock 阀门。

举例部件号: V7C6-CW-FP-H100-001QA-P01

阀门描述:

为 schedule 120 管准备的 10" ANSI 900# 对焊连接,带有液压操纵器及清洗孔的等径孔道阀门。

ECharts 将根据要求予以提供。

安装

收货及准备步骤

- 1. 移除运输保护。
- 2. 检验阀门是否存在运输损坏。
- 3. 检验阀门孔并清除碎屑。
- 4. 转动阀门以检验球体涂层是否有损坏。

执行器

警告! 阀门绝对不能作为结构部件使用。

重要提示! 装有电动执行器的阀门在动力运转前应转动至中间行程位置。

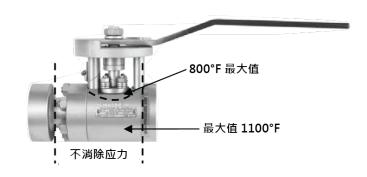
注意! 只能由受过培训的
ValvTechnologies 工作人员将执行器安装或重新安装至 ValvTechnologies 阀门上,或对制动器进行调整和拆除工作。

流向

注意! 阀必须按照高压流向指示方向安装。高压端被定义为此端具有最高的压力,阀门处于关闭隔离位置。

注意:阀门设计用于单向压力隔离(订购为双 向者除外)。如果存在反向压力,请咨询工 厂。

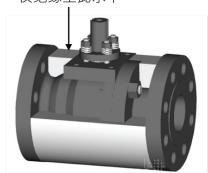
焊接、应力消除与绝缘


🕰 注意!

焊接过程中必须将阀门打开。

注意! 过高的温度 及不当的绝缘或应力消除技术 可能会损坏阀门并导致 保修失效。

如果担心高温损坏制动器,建议使用辐射防护屏。采取维护措施以尽量减少阀门内的焊渣及焊接飞溅物。请勿撞击阀门上的圆弧。


允许进行局部应力消除,请勿在没有咨询 ValvTechnologies 工程部的情况下进行熔炉应力消除 操作。

注意! 在进行应力消除操作时禁止进行阀 门绝缘操作。

建议对预期经受 400°F (205°C) 温差的阀门进行阀门 绝缘操作。

注意! 阀体平面上不得进行绝缘操作。

仅绝缘至此水平

绝缘操作后的步骤

清洗及冲洗管路系统。

当阀门循环开关几次后,观察限位开关和位置指示器的运作情况。

注意! 绝对不能将阀门及阀门装配组件作为承重构件或 承重结构的一部分使用。

操作

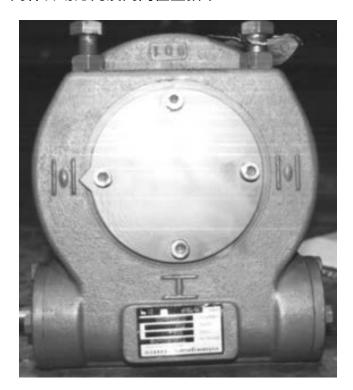
阀门润滑

- 无需对 ValvTechnologies 金属密封球阀进行内部润滑操作。
- 再次紧固阀体(通过系统减压),且如这些区域发生泄漏,允许使用密封填料螺栓。
- 需要表 1、表 2 中给出的扭矩值。
- 需要使用铜基防卡润滑油进行螺栓润滑,并使用二硫化钼防卡润滑油(或使用同类替代品)进行填充润滑。

表 1——阀体螺栓扭矩值

螺栓	扭矩值 ft-lb (Nm)				
尺寸—— 英寸 (mm)	В7	B8M			
5/16	12 (16)	3 (4)			
3/8	20 (27)	6 (8)			
7/16	35 (47)	10 (14)			
1/2	50 (68)	15 (20)			
9/16	75 (102)	20 (27)			
5/8	100 (136)	30 (41)			
3/4	175 (237)	50 (68)			
7/8	500 (678)	80 (108)			
1	425 (576)	120 (163)			
1 1/8	600 (813)	175 (237)			
1 1/4	850 (1152)	245 (332)			
1 3/8	1100 (1491)	330 (447)			
1 1/2	1500 (2034)	430 (583)			
1 5/8	1900 (2576)	550 (746)			
1 3/4	2400 (3254)	700 (949)			
1 7/8	3000 (4067)	850 (1152)			
2	3700 (5017)	1000 (1356)			
3	11500 (15592)	3700 (5017)			
3 1/2	18400 (24947)	5800 (7864)			

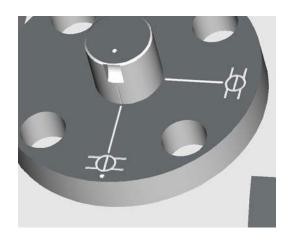
备注: 由于 ValvTechnologies 阀门具有金属密封表面,因此其操作扭矩相比 软性固定球阀来说高得多。


表 2——密封扭矩值

螺栓直径	标准球体		扭矩值 ir	n-lb (Nm)	
(mm)	内径・单位 (mm) 密封扭矩值		密封扭矩值		上限
1/4 - 20 (6)	3/8 (10)	30	(3.4)	40	(4.5)
5/16 - 18 (8)	5/8 (16)	48	(5.4)	60	(6.8)
5/16 - 18 (8)	1 - 1/16 (27)	48	(5.4)	60	(6.8)
3/8 - 16 (10)	2 - 1/8 (54)	84	(9.5)	105	(11.9)
3/8 - 16 (10)	3 - 1/16 (78)	84	(9.5)	105	(11.9)
3/8 - 16 (10)	4 - 1/16 (103)	84	(9.5)	105	(11.9)
7/16 - 14 (11)	-	132	(14.9)	165	(18.7)
1/2 - 13 (13)	5 - 1/8 (130)	204	(23.1)	225	(25.5)
1/2 - 13 (13)	6 - 1/16 (154)	204	(23.1)	225	(25.5)
9/16 - 12 (14)	-	252	(28.5)	315	(35.6)
5/8 - 11 (16)	-	396	(44.8)	495	(56.0)

🖍 **备注:** 数值用于 B8M · **1** 级螺栓。

阀杆转动方向及阀门位置指示


所有 ValvTechnologies 球阀 (除非特别说明)的操作均为顺时针关闭,逆时针打开。

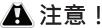
通常需要 80 ft/lbsb. (335N) 的手柄推力 以操作阀门手轮及控制杆。

当手柄阀门孔位于同一轴上时,控制杆显示为打开。当手柄与阀门孔呈 90度 时,阀门显示为关闭。

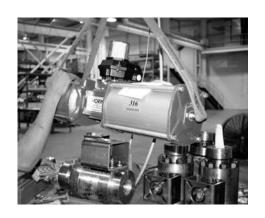
阀杆、密封压盖及球体(某些情况下还有传动套筒)具有如下所示的标记。当从阀杆上向下看且面向下游方向时,标记列于关闭阀门的左侧。

在开动的及齿轮驱动的阀门上,有一个箭头指示了 阀门的位置。

执行器操作


必须按照制造商的书面说明书对执行器进行安装、操作及维护。如果这些说明与本手册包含的说明存在冲突,则应联系 ValvTechnologies 的授权经销商或 ValvTechnologies 休斯顿办事处。

维护


- 警告! 如由非授权人员对 VALVTECHNOLOGIES 阀门组件进行拆卸和维修操作,可能会产生危险且使保修失效。
- 注意! 拆卸过程中 需特别注意不要 损坏 配套组件、填充物或密封表面。
- 注意! 如果密封压盖螺母松动,必须更换填充物。仅允许使用经 ValvTechnologies 批准的填充物。

拆卸(接上页)

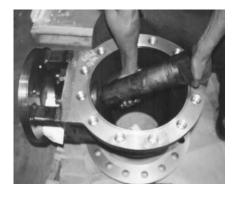
- 1. 应关闭阀门。
- 2. 方向和定位应标记在阀门部件 上·特别是在拆除前·球体的侧 面应与底座或碳化插入物(如适 用)匹配。
- 3. 标记在清洗过程中应不能被擦除,但也不应损坏部件(例如请勿标记)。

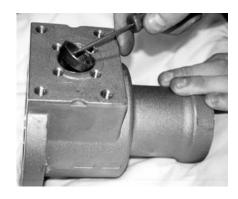
球体与端盖 匹配—— 不得将 这些匹配部件分开 或交换位 置。

- 4. 移除整个执行器总成,避免用力 过度。
- 5. 移除阀体螺母并将阀体与端盖 分开。

6. 根据阀门设计移除阀体密封或 垫圈

7. 移除阀体垫圈。(如适用)


8. 标记方向后移除球体,并采取保护措施以防止可能产生的损坏。


9. 移除密封压盖螺母、密封压盖弹 簧及密封压盖。

10. 移除阀杆。

11. 使用填充物挑棍或同类替代品移 除填充物。

12. 检验所有部件·注意是否存在缺陷且是否需要更换·然后使用溶剂去除油污·以备重新组装。

注意! 不允许进行 喷砂操作,因为它可能会破坏或损坏 重要的表面。

维修和返工

在重新装配之前,应更换或检验所有以下部件,并验证其是否合格:

- 填充物
- 阀体垫圈和/或密封
- 蝶形弹簧——如发生变形或收缩而导致数值低于表 3 中的数值,请进行更换。
- 球体和底座

如果没有明显的损坏,可以使用下述方法将阀球与阀座 • 重新配对研磨。

- 如不能重新研磨球体、端盖或碳化插入物 (如适 用) 必须重新加工底座,重新涂上涂层,并重新与 新球配对研磨。该操作必须由经 ValvTechnologies 服务中心批准的人员完成。
- 底座可重新加工数次,作为返工,表面公差应设 计为可适应端盖。联系 ValvTechnologies 以获取 MOB 公差范围。

其他阀门部件:

- 一般而言,这些部件可清洗并恢复运作。
- 如果需要返工,请联系 ValvTechnologies 工程部。
- 必须使用经 ValvTechnologies 批准的部件对损坏或 老化的螺栓、螺母或弹簧进行更换。

- 球体用3微米金刚泥重叠到端盖上。
- 对着端盖对球体进行图 8 所示的动作。
- 端盖在转台上转动(频率为 30 r.p.m.)。
- 如果没有转台,则将端盖置于坚固、干净的表面上 并在研磨过程中用手转动端盖。
- 通过滑动清洁球体与清洁端盖封闭区域的啮合面测 试球体/端盖。如果出现可见的、连续的带状,则密 封合格。

表 3 蝶形弹簧高度

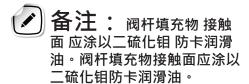
标准孔径	弹簧高	医度——单位 (mm)
(英寸)	最小值	最大值
3/8	.065 (1.651)	.080 (2.032)
5/8	.110 (2.794)	.126 (3.2)
1-1/8	.135 (3.429)	.150 (3.81)
1-1/2	.135 (3.429)	.160 (4.064)
2-1/8	.220 (5.588)	.240 (6.096)
3-1/16	.265 (6.731)	.290 (7.366)
3-1/2	.350 (8.890)	.362 (9.195)
4-1/16	.320 (8.128)	.340 (8.636)
5-1/8	.430 (10.922)	.460 (11.684)
6-1/16	.500 (12.7)	.530 (13.462)
7-1/8	.400 (10.16)	.430 (10.922)
8-1/16	.460 (11.684)	.500 (12.7)
10-1/16	.640 (16.256)	.680 (17.272)
12-1/6	.760 (19.304)	.800 (20.32)
13-1/4	.790 (20.066)	.830 (21.082)
15-1/4	.890 (22.606)	.930 (23.622)
17-1/4	1.080 (27.432)	1.160 (29.464)
19-1/4	.860 (21.844)	1.020 (25.908)
21-1/4	1.390 (35.306)	1.460 (37.084)

🎤 备注: 如果尺寸不在此范围内,则在装配前 需得到 ValvTechnologies, Inc. 工程部的批准。

重新装配

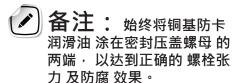
注意! 仅可使用经 ValvTechnologies 批准的部件对阀门进行重新装配。

备注:建议在所有内部碳钢阀门部件及表面上涂上少量、干净/新的机油。


1. 阀体被放置在入口法兰上,中心 夹紧或端部焊接,阀体腔朝上。

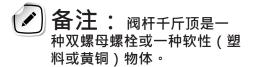
2. 应通过阀体腔一侧的阀杆孔中插 入阀杆。

3. 需要对阀杆进行定向,从而使舌式平面与钻孔平行。



4. 替换阀杆填充物与密封压盖。

5. 使蝶形弹簧的锥形端相对安装。 用手将密封压盖弹簧拧紧。



备注: 当从阀杆上向下 看且 面向下游方向时,阀杆 顶部的标记 应位于 阀门左 侧。

- 6. 使用阀杆千斤顶将阀杆与阀体 压紧。
- 7. 均匀地拧紧填充物密封压盖螺母 至指定扭矩值(请参阅表 2)。

安装执行器

8. 装配执行器、控制杆及/或安装 支架是必要的。执行器及阀门必 须均处于关闭位置。

注意! 重新 安装执行器 时 须格外小心。必须避免 阀杆 进入球体。

9. 在所有 ValvTechnologies 提供的操作适配器板的中 间位置都有一个机械加工孔。这个板安装到阀门上 后,应与主轴同轴,然后拧紧螺栓,将安装板固定 在阀门上。拧紧螺栓后,需再次进行同轴度检查。 操纵器与阀门间的一点点偏离都会使操纵器内过 紧,会对阀门或操纵器本身造成损坏。

如果操纵器不能顺畅的滑至阀门上, 应对阀杆、键,必要时还要对驱

动套筒进行检查看是否有毛刺、飞边等。

A 注意! 仅可由经 ValvTechnologies 批准的人 员安装制动器。安装制动器后必须测试阀门以验 证零泄露。

- 10. 移除阀杆千斤顶。
- 11. 将球体精确定在关闭方向,设置操纵器的关闭挡
- 12. 循环操作阀门数次,再次紧固填料压盖螺母。

13. 测量关键组件的正确尺寸

仅带有金属阀体密封的阀门需使用本 测量方式。

加压密封间距

使端盖端朝上放置阀体。小心的摆放压力密封使其与阀 体端面平行。特别小心的将端盖放到阀

- 14. 体和压力密封上。使它们都保持水平。
- 15. 检查阀体空隙 请见表 4。如果空隙超出公差值,则 可能使用了1个超尺寸的阀体。

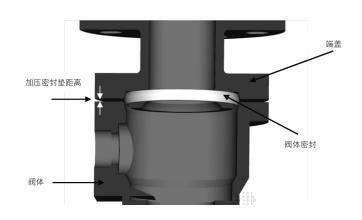
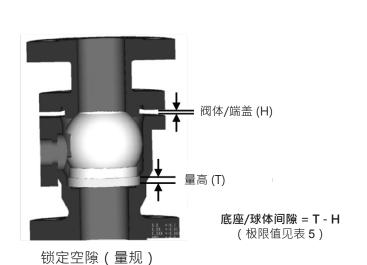
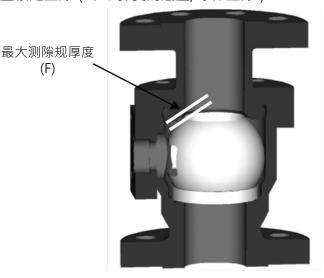


表 4 - 组件和加压密封之间的距离(无球体)(仅压力密封阀)

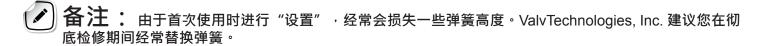
W. WII HAME DESCRIPTION (NOWIF) (NEXT DESIRE)						
标准球孔	距离	- in. (mm)				
(内径)——单位 (mm)	最小值	最大值				
3/8 (10)	.020 (.508)	.040 (1.016)				
5/8 (16)	.023 (.584)	.041 (1.0414)				
1-1/16 (27)	.041 (1.0414)	.068 (1.727)				
1-1/2 (38)	.045 (1.143)	.068 (1.727)				
2-1/8 (54)	.048 (1.219)	.071 (1.803)				
3-1/16 (78)	.078(1.981)	.105 (2.667)				
4-1/16 (103)	.095 (2.413)	.125 (3.175)				
5-1/8 (130)	.120 (3.048)	.145 (3.683)				
6-1/16 (154)	.145 (3.683)	.178 (4.521)				
8-1/16 (205)	.180 (4.572)	.210 (5.334)				
10-1/16 (256)	.230 (5.842)	.260 (6.604)				
12-1/16 (306)	.275 (6.985)	.310 (7.874)				
15-1/4 (387)	.305 (7.747)	.345 (8.763)				
17-1/4 (438)	.330 (8.382)	.370 (9.398)				
19-1/4 (489)	.350 (8.89)	.390 (9.906)				
21-1/4 (540)	.380 (9.652)	.430 (10.922)				


如果标准不在此范围内,则在装配前需得到 ValvTechnologies 工程部的批准。


大口径阀门的锁定空隙

备注: 对于小口径(5/8"、1-1/16"和 2-1/8")、低压(150#-300#)阀门,这个测量结果并非 直接测得,而是测量弹簧距离后计算而得。

- 16. 将上游阀座放入阀体内, 使其球面半径朝着打开的端盖端方向。
- 17. 将球体插入阀体, 越过阀杆目置于上游底座之上。
- 18. 小心地将端盖置于阀体上并与阀体排成一行(平行)。测量锁定空隙(不带弹簧的底座/球体空隙)。

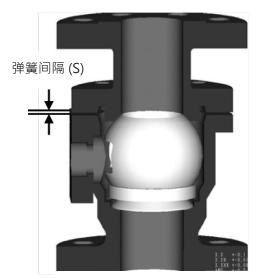


锁定空隙 底座/球体间隙 = F x 1.4 (极限值见表5)

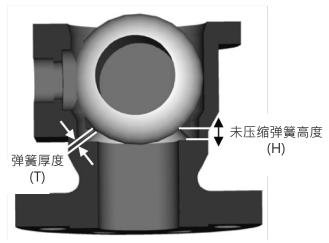
蝶形弹簧间隔

19. 测量盘形弹簧高度,容许的高度范围参照表3。如果高度超出规定,更换新弹簧。

20. 移除端盖、球体及底座。



21. 插入碟形弹簧,将大的一端置入 阀体腔中。



22. 轻轻置入上游底座,弯曲底座面 朝您, 背对蝶形弹簧。

- 23. 安装球体时,应使啮合研磨端背对上游底座。
- 24. 将端盖轻轻放到阀体上,将端盖向下放到阀体上时,保持端盖与阀体面平行。
- 25. 使用塞尺测量端盖与阀体之间的蝶形弹簧距离。

弹簧距离间隙 **弹簧距离 = S** (极限值见表 5)

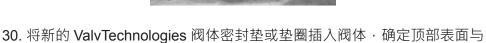
5/8" 、1-1/16" 和 2-1/8" 口径阀门的锁定间隙

底座/球体间隙 = H-T-弹簧距离 (S) (极限值见表 5)

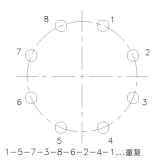
备注:为了获得准确的弹簧距离测量值,请将一套 180SDgr 量表放到另一套旁边,然后使用几乎相同厚度的堆叠来测量。将两个堆叠物一起测量并除以二以得到平均空隙值 "g"。对照表 5 核对空隙值 "g"。

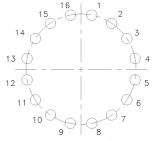
表 5——无弹簧底座/球体空隙

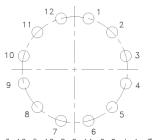
标准球孔	底座/球体3	空隙——单位 (mm)
(内径)——单位 (mm)	最小值	最大值
3/8 (10)	N/A	.069 (1.753)
5/8 (16)	N/A	.087 (2.210)
1-1/8 (29)	N/A	.075 (1.905)
1-1/2 (38)	.032 (.813)	.046 (1.168)
2-1/8 (150#-300#) (54)	N/A	N/A
2-1/8 (600#-4500#) (54)	.040 (1.016)	.056 (1.422)
3-1/16 (78)	.053 (1.346)	.067 (1.702)
3-1/2 (90)	.033 (.838)	.046 (1.168)
4-1/16 (103)	.043 (1.092)	.056 (1.422)
5-1/8 (130)	.037 (.9398)	.052 (1.321)
6-1/16 (154)	.057 (1.448)	.079 (2.007)
7-1/8 (181)	.040 (1.016)	.053 (1.346)
8-1/16 (205)	.066 (1.676)	.084 (2.134)
10-1/16 (256)	.053 (1.346)	.065 (1.651)
12-1/16 (306)	.064 (1.626)	.083 (2.108)
13-1/4 (337)	.085 (2.159)	.100 (2.54)
15-1/4 (387)	.105 (2.667)	.120 (3.048)
17-1/4 (438)	.130 (3.302)	.145 (3.683)
19-1/4 (489)	.135 (3429)	.165 (4.191)
21-1/4 (540)	.190 (4.826)	.210 (5.334)


完成装配

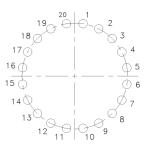
- 26. 移除端盖并插入阀体垫圈/密封垫。
- 27. 重新对阀球、阀体和端盖上的密封面进行检查以确保其在操作中未受损 坏。
- 28. 更换所有损坏的阀体螺柱。使用铜基防卡高温复合润滑脂涂抹螺纹。
- 29. 替换蝶形弹簧、上游底座及球体。确保啮合研磨侧面向阀体的端盖。





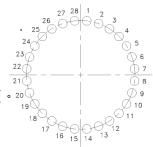

31. 均匀地拧紧阀体螺栓/螺母,观察阀体垫圈下拉情况。使用逐渐增加的 扭矩水平,使用星形图案模式拧紧对侧的螺栓,直至阀体和端盖紧紧贴

注意! 不得对同一螺栓连续紧固超过四分之一圈。


32. 在全部完工之初,两个面应该保持准确的平行。否则会导致密封故障。 以星形方式紧固至扭矩达到表 1 所列扭矩的三分之二。然后重复直至达到 表1中的全扭矩值。对于大于10英寸的阀门,重复最后的扭矩值(全扭 矩)。

1-7-3-10-5-12-8-2-11-6-9-4-1...重复

-11-5-16-3-8-14-18-7-13-4-19-15-9-17-2-6-12-20-10-1...重复



用星形方式紧固非常重要。

33. 手动转动阀门以验证其是否运作正常。

阀体面精确平行。

34. 根据表 2 中给出的数值重新设置填充物密封压盖螺栓的扭矩

测试

- 1. 可根据 ValvTechnologies 的测试步骤 A-TTP 010 对阀门进行测试。
- 2. 在进行底座测试时,必须在上游侧加压。阀门上的箭头(或指示高压端的标签)指示应指明所施加压力的方向。

备注: 考虑到向压力密封,必须对双向阀门进行测试。在对任何双向阀门进行测试前,应咨询经 ValvTechnologies 批准的服务中心以获取正确的测试方法及测试压力值。

故障排除

故障	可能造成该故障的原因	补救措施
无法转动或运作 阀门	1) 制动器失灵 2) 阀门中充满碎屑 3) 阀杆键剪切 4) 球体底座空隙不正确	1) 更换或维修制动器 2) 转动并冲洗阀门以清除碎屑 3) 确定阀杆阀门键切断的原因并校正/更换阀门键 4) 联系工厂
阀杆填充物泄露	1) 密封压盖螺栓松弛 2) 填充物损坏或丢失 3) 密封垫未对齐	1) 拧紧密封压盖螺栓 2) 关闭系统并更换填充物 3) 更换并将密封垫正确地对齐
阀体垫圈泄露	1) 阀体螺栓松弛 2) 阀体垫圈损坏 3) 阀体垫圈座面进入阀 体或端口部分损坏	1) 拧紧阀体螺栓 2) 将运作中的阀门移除并更换阀体垫圈 3) 将部件退回 ValvTechnologies 返工
阀门球体/底座 泄露	1) 阀门没有完全关闭 2) 阀门中混有碎屑 3) 阀座或阀球损坏	1) 关闭阀门 2) 转动并冲洗阀门以清除碎屑。 或者退回返工。

部件库存规划

为了在最大限度提高工厂效率的同时保持最高的安全性并减少成本,故制定下列指导方针用于部件库存量:

部件分类

类别	部件使用	部件使用 阀门可得性	
Α	使用最频繁	70%	
В	不频繁使用	85%	
С	很少更换	90%	
D	鲜有更换	95%	
E	通常会更换	100%	

请参阅以下的 V1 系列球阀推荐备件清单。*

V1 系列球阀推荐备件清单

类别	部件描述	数量/同类与同尺寸	覆盖范围百分比
А	密封压盖填充物 密封压盖负载弹簧	1/3	70%
В	阀体垫圈(金属) 蝶形弹簧	1/5	85%
С	端盖/整体球座 上游底座	1/10	90%
D	传动套筒 阀杆 密封压盖	1/15	95%
E	Yoke Pillers 桥接器 推力轴承 阀体螺栓与螺母	1/20	100%

^{*}全部非标备件清单将在订单处理过程中予以提供。

V 系列

安装与运营维护手册

全球办事处

总部及生产厂房	Peru	中国	Middle East
ValvTechnologies, Inc.	Lima	上海	Dubai
5904 Bingle Road	peru@valv.com	china@valv.com	middle.east@valv.com
Houston, Texas 77092 U.S.A.		中国	
电话 +1 713 860 0400	Brazil	成都	India
传真 +1 713 860 0499	São Paulo	china@valv.com	Chennai
info@valv.com	brazil@valv.com	Cilila@vaiv.Com	india@valv.com
		中国	
欲寻找离您最近的经销商或分支办	United Kingdom	北京	Japan/Korea
事处,	Stockton-on-Tees	china@valv.com	Seoul
请登录我们的网站:	europe@valv.com		korea@valv.com
www.valv.com		Eastern Europe	
欲联系我们世界各地的销售人员,	Australia	Warsaw	Spain
请发邮件至	Brisbane	poland@valv.com	Madrid
sales@valv.com	australia@valv.com	, -	spain@valv.com

©2004-2013 ValvTechnologies, Inc. All rights reserved. 710_V Series IOM_Chinese. May 2014.